MBS FreeResponse rewritten for Gridworld

2004 A #3 Rewritten GridStocker

This question involves reasoning about the code from the GridWorld case study. The purpose of the GridStocker class is to increase the bug population in a grid if the population density falls below a certain minimum. The population density of an grid is the ratio of the number of actors in the Grid to the total number of locations in the grid. When there are too few actors in the grid, enough bugs will be added to make the population greater than the specified minimum density. You will be asked to implement some of the methods for the GridStocker class. The declaration of the GridStocker class is as follows:

public class GridStocker

{

 private Grid<Actor> theGrid;

 private double minDensity; // 0.0 <= minDensity < 1.0

// postcondition: returns the minimum number of bugs that // need to be added to make the population density

// greater than minDensity

private int numUnder()

{ /* to be implemented in part (a) */}

// postcondition: returns a random location within the

// bounds of theGrid

private Location randomLocation()

{ /* to be implemented in part (b) */}

// postcondition: the number of bugs in theGrid has been // increased by numToAdd; the bugs added are placed at

// random empty locations in theGrid

public void addBugs(int numToAdd)

{ /* to be implemented in part (c) */}

// constructor and other methods not shown

For example, suppose that the grid has 7 rows and 7 columns, giving it a total of 49 locations. If the minimum density is 0.5, 25 locations need to be occupied to meet the minimum density requirement. If the number of actors in the grid is 17, then the call numUnder() would return 8.

a. Write the GridStocker method numUnder. Method numUnder returns the smallest number of bugs that must be added to make the density of actors in the grid greater than minDensity. If the density of actors in the grid is already greater than minDensity, then numUnder returns zero. Recall that the Grid methods getNumRows and getNumCols return the number of rows and the number of columns, respectively, in a grid.

Complete method numUnder below.

// postcondition: returns the minimum number of bugs that // need to be added to make the population density

// greater than minDensity

private int numUnder()

b. Write the GridStocker method randomLocation. Method randomLocation returns a random location within the bounds of the grid.

In writing randomLocation, you may use any of the accessible methods of the classes in the case study. Solutions that reimplement functionality provided by these methods, rather than invoking these methods, will not receive full credit.

Complete method randomLocation below:

// postcondition: returns a random location within the

// bounds of theGrid

private Location randomLocation()

c. Write the GridStocker method addBugs. Method addBugs adds numToAdd bugs to the grid at random locations that are not already occupied. You may use the one-parameter Bug constructor, so that the bugs added have a random color.

In writing addBugs, you may call randomLocation. Assume that randomLocation works as specified, regardless of whatyou wrote in part (b). You may also use any of the accessible methods of the classes in the case study. Solutions that reimplement functionality provided by these methods, rather than invoking these methods, will not receive full credit.

Complete method addBugs below.

// postcondition: the number of bugs in theGrid has been // increased by numToAdd; the bugs added are placed at

// random empty locations in theGrid

public void addBugs(int numToAdd)

ZigZagBug

This question involves reasoning about the code from the GridWorld case study. A copy of the code is provided as part of the exam.

Consider defining a new type of bug called ZigZagBug, which moves in a zigzag pattern. The ZigZagBug always faces in a diagonal direction.The first time a ZigZagBug moves, it will move forward if that location is empty. This is illustrated in the figure below as the move from position 1 to position 2. The bug will then turn 90 degrees to the left. In each subsequent move, the ZigZagBug will attempt to move forward , and then turn 90 degrees in the opposite direction of its previous turn (the second move will forward with a right turn, the third move will forward with a left turn, and so on). If the ZigZagBug is unable to move, it stays in the same location but reverses its direction. After reversing its direction, the next time the ZigZagBug moves, it will attempt to turn in the same direction as it tried before reversing. The diagrams below show the path followed by a single ZigZagBug object as a result of multiple moves.

	
	
	
	
	

	
	 1
	
	 3
	

	
	
	2
	
	 4

	
	
	
	
	

Now consider what happens when the ZigZagBug attempts to move forward from position 4. This move is blocked, and consequently the ZigZagBug stays in the same location but reverses its direction. This is illustrated as position 5 in the diagram below. From position 5, the ZigZagBug moves forward and turns right, and from position 6, it moves forward to position 7 and turns left.

	
	
	
	
	

	
	
	
	
	

	
	
	7
	
	5

	
	 8
	
	 6
	

The ZigZagBug class is defined by extending the Bug class and overriding the move, and the turn methods. Because a ZigZagBug alternates its pattern of movement, a private instance variable turnRight keeps track of the direction of the next movement.

The partial declaration for class ZigZagBug is shown below:

public class ZigZagBug extends Bug

{

 private boolean turnRight;

 // true indicates the next turn should be to the

 // right, false indicates the next turn should be

 // to the left.

 public ZigZagBug()

{

 turnRight=false;

}

//moves this ZigZagBug diagonally, alternating right and

//left diagonals.

public void move()

{ /* to be implemented in part (a) */ }

// turns the bug 180 degrees without changing its location

//
public void turn()

{ /* to be implemented in part (b) */ }

(a) Override the move method for the ZigZagBug class. Assume that the canMove method is working correctly, and has returned true. The bug should move diagonally to the right or the left depending on the state of the turnRight boolean variable. You may use any of the accessible methods of the classes in the case study.

Complete the method move below.

//moves this ZigZagBug diagonally, alternating right and

//left diagonals.

public void move()

(b) Override the canMove method for the ZigZagBug class. This method returns true if the ZigZagFish can move into an empty location or a location with a flower along the appropriate diagonal indicated by the turnRight variable, and false when it cannot.

//returns a boolean indicating whether the ZigZagBug can

//move in the appropriate diagonal direction into an empty

//location or location with a flower

public Boolean canMove()

(c) Override the turn method for the ZigZagBug class. This method reverses the direction of the ZigZagBug without changing its location.

// turns the bug 180 degrees without changing its location

//
public void turn()

DropGame

This question involves reasoning about the code from the GridWorld case study to model a game board. A copy of the code is provided as part of the exam.

Consider using the BoundedGrid class from the GridWorld case study to model a game board. In this implementation of the Grid interface, each location has at most four neighbors. Those neighbors are determined by the Grid method getValidAdjacentLocations.

DropGame is a two-player game that is played on a rectangular board. The players – designated as BLACK and WHITE – alternate, taking turns dropping a colored piece in a column. A dropped piece will fall down the chosen column until it comes to rest in the empty location with the largest row index. If the location for the newly dropped piece has three neighbors that match its color, the player that dropped this piece wins the game.

The diagram below shows a sample game board on which several moves have been made.

North

0
 1
 2
 3
 4
 5

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

 0

 West 1 East

 2

 3

South

The following chart shows where a piece dropped in each column would land on this board.

 Column Location for Piece Dropped in the Column

	0
	No piece can be placed, since the column is full.

	1
	(0,1)

	2
	(2,2)

	3
	(0,3)

	4
	(3,4)

	5
	(1,5)

Note that a WHITE piece dropped in column 2 would land in the shaded cell at location (2,2) and result in a win for WHITE because the three neighboring locations – (2,1), (3,2), and (2,3) contain WHITE pieces. This move is the only available winning move on the above game board. Note that a BLACK piece dropped in column 1 would land in location (0,1) and not result in a win because the neighboring location (0,2) does not contain a BLACK piece.

The Piece class is defined as follows:

public class Piece

{

 //returns location of this Piece

 public Location location()

{ / *implementation not shown*/}

 //returns color of this Piece

{ / *implementation not shown*/}

 // there may be fields, constructors, and methods that are not shown.

}

An incomplete definition of the DropGame class is shown below. The class contains a private instance variable theGrid to refer to the Grid that represents the game board. Players will add Piece objects to this grid as they take turns. You will implement two methods for the DropGame class.

public class DropGame

{

private Grid theGrid; // contains Piece objects

//returns null if no empty locations in column;

//otherwise, returns the empty location with the

// largest row index within the specified column;

//precondition: 0 <= column < theGrid.getNumCols()

public Location dropLocationForColumn(int column)

{ /* to be implemented in part (a) */ }

//returns true if dropping a piece of the given color

// into the specified column matches color with three

// neighbors; otherwise, returns false

// precondition: 0 <= column < theGrid.getNumCols()

public boolean dropMatchesNeighbors(int column, Color pieceColor)

{ /* to be implemented in part (b) */ }

// there may be fields, constructors, and methods that are not

 // shown.

}

(a) Write the DropGame method dropLocationForColumn, which returns the resulting Location for a piece dropped into the specified column. If there are no empty locations in the column, the method should return null. Otherwise, of the empty locations in the column, the location with the largest row index should be returned.

In writing dropLocationForColumn, you may use any methods defined in the DropGame class or accessible methods of the case study classes.

Complete method dropLocationForColumn below.

//returns null if no empty locations in column;

//otherwise, returns the empty location with the

// largest row index within the specified column;

//precondition: 0 <= column < theGrid.getNumCols()

public Location dropLocationForColumn(int column)

(b) Write the DropGame method dropMatchesNeighbors, which returns true if dropping a piece of a given color into a specific column will match the color of three of its neighbors. The location to be checked for matches with its neighbors is the location identified by method dropLocationForColumn. If there are no empty locations in the column, dropMatchesNeighbors returns false.

In writing dropMatchesNeighbors, you may assume that dropLocationForColumn works as specified regardless of what you wrote in part (a).

Complete method dropMatchesNeighbors below.

//returns true if dropping a piece of the given color

// into the specified column matches color with three

// neighbors; otherwise, returns false

// precondition: 0 <= column < theGrid.getNumCols()

public boolean dropMatchesNeighbors(int column, Color pieceColor)

PounceCritter

This question involves reasoning about the code from the Gridworld case study. A copy of the code is provided as part of this exam.

A PounceCritter is a type of critter that looks for prey and then “pounces” on it. A PounceCritter can see only a limited distance in its forward direction. If the PounceCritter sees another critter, it rushes forward and eats the nearest one that it sees, ending up in the location where its prey was originally located. If the PounceCritter does not see another critter, it acts as a critter.

The PounceCritter class is shown below.

public class PounceCritter extends Critter

{

private int range; // the distance that a PounceCritter can see; range>0

private boolean foundLunch; // boolean indicating that a critter is in range

private Location lunchLoc; // the location of the eaten critter

/**Overrides Critter method.Looks ahead range locations in current direction

* @return the nearest critter in that direction within range (if any)

* update necessary state variables.

* if no such critter is found, get the actors for processing like a regular critter

*/

private ArrayList<Actor> getActors()

{ /* to be implemented in part (a) */}

/** Overrides Critter method. If PounceCritter found a critter within range, it will

* eat it, removing it from the grid. If no critter was within

* range, then the PounceCritter acts as a regular critter, processing the list of

* surrounding actors.

*/

public void processActors(ArrayList<Actor> actors)

{ /* to be implemented in part (b) */}

/** if PounceCritter ate a critter, then it should select that critter’s last location.

* otherwise it should choose its possible locations as a regular critter would.

*/

public ArrayList<Location> getMoveLocations()

{ /* to be implemented in part (c) */}

// There may be fields, constructors, and methods that are not shown.

}

The following diagrams show an example grid containing a PounceCritter (represented by P) and various rocks (R), bugs (B), flowers (F), and critters (C). The direction of the PounceCritter is indicated by the character “>” showing that, in this example, the PounceCritter is facing east. If the PounceCritter can see 2 or more locations ahead in its forward direction, it will see critter C3 as shown in the first diagram and will move to that location to eat it, removing C3 from the grid as shown in the second diagram.

Environment before the PounceCritter acts

North

 0
 1
 2
 3
 4
 5

	F2
	C1
	B1
	
	
	

	F1
	P>
	
	C2
	
	

	
	R1
	
	
	
	

	
	
	C3
	
	
	B2

 0

 West 1
 1

2

3

South

Environment After the PounceCritter acts

North

 0
 1
 2
 3
 4
 5

	F2
	C1
	B1
	
	
	

	F1
	
	
	P>
	
	

	
	R1
	
	
	
	

	
	
	C3
	
	
	B2

 0

West 1

 2

 3

 South

If the PounceCritter in the first diagram above could see only 1 location ahead, it would not see any prey, and therefore would act as an ordinary critter.

(a) Override the getActors method for the PounceCritter class. If any critters are within range locations in the direction that the PounceCritter is currently facing, the method returns the nearest of these. Otherwise, the method returns null. Be careful to preserve the postconditions in the original critter method.

Complete method getActors below.

/**Overrides Critter method. Looks ahead range locations in current direction

* @return the nearest critter in that direction within range (if any)

* update necessary state variables.

* if no such critter is found, get the actors for processing like a regular critter

*/

private ArrayList<Actor> getActors()

(b) Override the processActors method for the PounceCritter class. A PounceCritter attempts to find a critter that it can eat. If it finds such a critter, the PounceCritter eats it (removing it from the grid) and moves to its location. If the PounceCritter does not find a critter that it can eat, it acts as an ordinary critter. Be careful to preserve the postconditions in the original critter method.

In writing act, assume that findCritter works as specified, regardless of what you wrote in part (a).

Complete method processActors below.

/** Overrides Critter method. If PounceCritter found a critter within range, it will

* eat it, removing it from the grid. If no critter was within

* range, then the PounceCritter acts as a regular critter, processing the list of

* surrounding actors.

*/

public void processActors(ArrayList<Actor> actors)

(c) Override the getMoveLocations() method of the Critter class. When the PounceCritter pounces on a critter and eats it, it should choose the location of the eaten critter as its next move. Be careful to preserve the postconditions in the original critter method.

Complete method getMoveLocations below.

/** if PounceCritter ate a critter, then it should select that critter’s last location.

* otherwise it should choose its possible locations as a regular critter would.

*/

public ArrayList<Location> getMoveLocations()

PredatorBug

This code involves reasoning about the code from the Gridworld case study. A copy of the code is provided as part of this exam.

Consider defining a new type of bug, called PredatorBug, that eats other bugs. At the beginning of a simulation step, a PredatorBug examines the environment location directly in front of it. If a bug of any kind is present, the PredatorBug eats that bug, removing it from the environment. Otherwise, if this is the fifth consecutive turn in which the PredatorBug has not eaten, it dies. After the attempt to eat, if the PredatorBug is still alive, it takes an ordinary turn, acting as an ordinary Bug.

A PredatorBug can be defined by inheriting behavior from the Bug class and adding or overriding methods as appropriate.

(a) Write a partial class declaration for PredatorBug that includes the heading for the class, any instance variables that must be declared in the class, and a constructor that takes the color of the PredatorBug as a parameter. Do not show other constructors and methods.

(b) Write the new eat method for the PredatorBug class. This method will remove a Bug that is directly in front of the PredatorBug if that grid location is not empty. The PredatorBug remains in the same location. The boolean result that is returned from the eat method indicates whether the PredatorBug was able to eat.

Complete the PredatorBug method eat below.

// if the PredatorBug is able to eat, the eaten bug is removed and true is returned

// else false is returned.

protected boolean eat()

(c) One way to implement PredatorBug is to override the act method. A PredatorBug will first eat if possible. If it is the fifth consecutive turn in which the PredatorBug has not eaten, the PredatorBug removes itself from the grid. Otherwise, it acts as an ordinary Bug.

You may use any of the accessible methods of the PredatorBug class and other public classes from the case study program. Solutions that reimplement functionality provided by these methods, rather than invoking these methods, will not receive full credit. Assume that the eat method works correctly.

Complete the PredatorBug method act below.

//acts for one step in the simulation

public void act()

2005 AB Free Response – Rewritten

The partial declaration for the HoneyBee class is shown below. You will override the processActors and selectMoveLocation methods.

public class HoneyBee extends Critter

{

private Location hive;

// location where created

private int nectar;

// bee collects nectar from flowers

private int full;

// when nectar = full, return to hive

//Constructs a HoneyBee; nectar is initialized to 0 and //full is set to f.

public HoneyBee(int f)

{

full=f;

}

// other constructors not shown

//returns the number of moves required to move from Location loc //to the hive

private int distanceHive(Location loc)

{

/*implementation not shown*/

}

//a HoneyBee processes actors by gathering nectar from all the //flowers until full. nectar should be incremented by 1 for each //flower encountered. When the HoneyBee is full, it should set //its direction toward home. post-conditions should be //preserved

public void processActors(ArrayList<Actor> actors)

{

/* to be implemented in part a*/

}

//selects move location as ordinary critter until full, when it //selects location closest to hive, or null if current location //is closer.

//postconditions should be preserved

public Location selectMoveLocation(ArrayList<Location> locs)

{

/* to be implemented in part b*/

}

}

a. Override the processActors method for the HoneyBee class. A HoneyBee gathers nectar from any flowers it encounters until it is full. Once it is full, it turns to face the hive.

In writing processActors, you may use any of the accessible methods of the classes in the case study, including those specified in this question.

//a HoneyBee processes actors by gathering nectar from all the //flowers until full. nectar should be incremented by 1 for each //flower encountered. When the HoneyBee is full, it should set //its direction toward home. post-conditions should be //preserved

public void processActors(ArrayList<Actor> actors)

{

/* to be implemented in part a*/

}

b. Override the selectMoveLocation method for the HoneyBee class. A HoneyBee moves as an ordinary critter until it is full of nectar. When it is full, it selects the adjacent location that is closest to the hive, and also closer than the current location. If no such location exists, it will not move.
In writing selectMoveLocation, you may use any of the accessible methods of the classes in the case study, including those specified in this question.
//selects move location as ordinary critter until full, when it //selects location closest to hive, or null if current location //is closer.

//postconditions should be preserved

public Location selectMoveLocation(ArrayList<Location> locs)

{

/* to be implemented in part b*/

}

2006 AB 4 rewritten

4. This question involves reasoning about the code from the Gridworld case study. A copy of the code is provided as part of the exam.

Consider the problem of finding a particular kind of path, known as a NE-path between two empty locations in a grid. A NE-path is an ordered list of empty locations in which each successive location must be either the north neighbor or the east neighbor of the previous location. For example, the diagram below shows an environment in which the occupied locations are indicated by XX. One possible NE-path between start location (5,1) and end location (2,4) as shown in the diagram is

[(5,1), (5,2), (4,2), (3,2), (3,3), (3,4), (2,4)]

North

0
 1
 2
 3
 4
 5

	
	XX
	
	
	
	

	XX
	
	
	
	XX
	

	
	
	
	XX
	end
	

	
	
	
	
	
	

	
	XX
	
	
	
	

	XX
	start
	
	XX
	
	

 0

 West 1 East

 2

 3

 4
4

 5

South

Note that there may be more than one NE path connectiong two locations in an environment. In the above diagram, there are three distinct NE-paths that connect (5,1) to (2,4).

[(5,1), (5,2), (4,2), (3,2), (3,3), (3,4), (2,4)]

[(5,1), (5,2), (4,2), (4,3), (3,3), (3,4), (2,4)]

[(5,1), (5,2), (4,2), (4,3), (4,4), (3,4), (2,4)]

Similarly, there may be locations that have no NE-paths connecting them. In the above diagram, (3,3) and (0,4) cannot be connected because all possible NE-paths are blocked by occupied locations. Likewise, (2,4) cannot be the start of a NE-path to (5,1) because (2,4) is north and east of (5,1).

A NE-path between a start location and an end location can be found recursively. For a NE-path between start and end locations to be possible, both locations must be empty and the start location must not be north or east of the end location. If the start and end locations are the same, then the NE-path will consist of that single location. Otherwise, a NE-path can be searched for by trying to recursively find a NE-path from the north neighbor of the start location to the end location. If such a path is not found, a similar recursive attempt is made from the east neighbor of the starting location. If either of these NE-paths exists, the start location can be added to the front of that NE-path to complete an NE-path from start to end.

For example, the path from (5,1) to (2,4) in the above diagram is found by first attempting to find a NE-path from (4,1) to (2,4). This attempt fails because the starting location, (4,1) is not empty. Next, the attempt to recursively find a NE-path from (5,2) to (2,4) succeds. Suppose it yields the following path.

[(5,2), (4,2), (3,2), (3,3), (3,4), (2,4)]

The start location (5,1) is then added to the front of that path to yield the NE-path shown in the diagram.

The incomplete definition of the PathFinder class is given below. The class declares a private field theGrid to refer to the Grid being searched. You will implement two methods for the PathFinder class to complete the recursive path-finding algorithm.

public class PathFinder

{

 private Grid the Grid;

//returns true if the specified locations are possible starting and //ending locations for NE-path

//otherwise, returns false.

private boolean possibleEnds(Location start, Location end)

{ /* to be implemented in part a */ }

//returns a list containing a sequence of empty locations that form //a NE_path from start to end;

//returns null if no such path exists

//postcondition: theGrid is unchanged

public List<Location> findNEPath(Location start, Location end)

{ /* to be implemented in part b */ }

// there may be fields, constructors, and methods that are not shown

}

a. Write the PathFinder method possibleEnds, which returns true if the specified locations are possible end points for a NE-path. In order to be possible end points for a NE-path, both locations must be empty and the start location cannot be north or east of the end location.

Complete method possible ends below.

//returns true if the specified locations are possible starting and //ending locations for NE-path

//otherwise, returns false.

private boolean possibleEnds(Location start, Location end)

{

}

b. Write the PathFinder method findNEPath, which recursively searches the grid to find a NE-path between the locations start and end. If there ismore than one NE-path connecting the locations, the method may return any one of those NE-pathes. If there are no NE-paths connecting the locations, the method should return null.

In writing findNEPath, you may assume that possibleEnds works as specified, regardless of what you wrote in part (a)

Complete method findNEPath below.

//returns a list containing a sequence of empty locations that form //a NE_path from start to end;

//returns null if no such path exists

//postcondition: theGrid is unchanged

public List<Location> findNEPath(Location start, Location end)

{

}
2007 AB 4 rewritten

This question involves reasoning about the code from the Gridworld case study. A copy of the code is provided as part of this exam.

Suppose that you want to visit all locations of a square grid in a single loop. There is a familiar interface for the purpose: the iterator. In this question, you will complete a method in a class GridIterator that implements the Iterator interface.

Here is an incomplete definition of the GridIterator class.

public class GridIterator implements Iterator<Location>

{

private Grid grid; // the grid over which to iterate;

private Location loc; // the next location to be returned;

/** @param aGrid the grid over which to iterate

* Precondition: aGrid is square, i.e.,

* aGrid.getNumRows()==aGrid.getNumCols()

*/

public GridIterator(BoundedGrid aGrid)

{

 grid=aGrid;

 loc=new Location(0,0);

}

/** @return true if this GridIterator has more elements

* false otherwise

*/

public boolean hasNext()

{

return grid.isValid(loc);

}

/**Precondition: hasNext() returns true

*Postcondition: loc has been updated to the successor location

*@return the next location in the grid

*/

public Location next()

{ /* to be implemented in part a */}

/** Throws an UnsupportedOperationException since it is impossible to

* remove a location from a grid

*/

public void remove()

{

throw new UnsupportedOperationException();

}

}

a. Write the GridIterator method next. The next method should return the next location in the environment, that is, the location that is referenced in the loc instance field when the method is called. The next method should also update the loc instance field to the successor location, as described below. Note that the first location returned by next is (0,0) as initialized in the GridIterator constructor.

Your implementation of next should allow the iterator to visit all elements of a square BoundedGrid, following the diagonal pattern shown in the diagram below.

The following describes the algorithm for determining the successor location in the diagonal pattern shown in the diagram above.

1. If the current location is at the bottom edge of the grid, move to the top of the next diagonal. For example, in the diagram given above, (4,1) is followed by (2,4).

2. Otherwise, if the current location is at the left edge of the grid, move to the top of the next diagonal. For example, in the diagram given above, (1,0) is followed by (0,2).

3. Otherwise, move down and left. For example, in the diagram given above, (1,1) is followed by (2,0).

Complete method next below.

 /**Precondition: hasNext() returns true

*Postcondition: loc has been updated to the successor location

*@return the next location in the grid

*/

public Location next()

b. A client class contains the method emptyLocs, which returns a list of the first n empty locations when a given square grid grid is traversed by a GridIterator. If there are fewer than n empty locations in grid, emptyLocs should return all of them.

For example, suppose the grid grid is as shown in the diagram below, where x indicates an accupied location. In this example, the call emptyLocs(env, 5) returns a list of locations

[(0,1), (1,0), (2,0), (0,3), (1,2)]

0
1
2
3

	X
	
	X
	

	
	X
	
	X

	
	X
	
	

	
	X
	
	

 0

 1

 2

 3

Complete method emptyLocs below.

/** @param grid the grid over which to iterate

*
Precondition: grid is square, i.e., grid.getNumRows()==grid.getNumCols()

* @param n the desired number of empty locations to be returned

*
Precondition: n>0

* @return a list of the first n empty location;

*
 all empty locations if there are fewer than n empty locations

* Locations are ordered in the order in which they are visited by the GridIterator

*/

public List<Location> emptyLocs(BoundedGrid grid, int n)

East

East

