Inheritance, Interfaces, Abstract Classes and Classes

Interfaces are implemented by a class - then you must define the methods in that class. Interfaces do not have any private variables or completed methods. They just have method listings and final constant values. You cannot create objects of the interface type.
If you had

public interface test

 {public final int n = 5;

 }

This is fine and the classes that implement the interface will have access to n, but n is public (by default) and it is also final be default. You cannot change the value of n. That is the only kind of value or code you can write in an interface.

public interface car

{ public String getName();

 public double getPrice();

 public boolean isAvailable();

}

1. Write an interface for a Person class. We should be able to get the name and age and set and increment the age.

2. Write an interface for a Student class. We should be able to get the name and average and set the average.

3. Write an interface for an Employee class. We should be able to get the name, job and salary and be able to change the salary.
4. Write classes that implement each of the above interfaces.

5. class bank

 {private final double INTRATE = 0.035;

private double balance;

public bank() // default constructor - set balance to 0

{}

public bank(double b)

 { }

public void printbalance()

 {}

public double getBalance()

 { }

 public void deposit(double d) // adds d to balance

 { }

public void setBalance(double d)

 {}

 public boolean withdraw(double d)

 { // returns false if not enough money

 } // otherwise returns true and withdraws d from balance

public void addInterest()

 {} // adds interest to account based on INTRATE

}

6. Write a Thermometer class that keeps the temperature in Fahrenheit and Celcius. It should have one constructor that receives the temperature in Fahrenheit. You should have 2 accessors. You should have 2 modifiers (if one is changed, other is also). Write a toString method that will print out both temperatures.
7.

public class planet

{

private String name;

private double weight;

private double circumference;

public double getWeight()

 {

}

public planet(String n,double w,double c)

 {

 }

public String toString()

 {

}

public int compareByWeight(planet p)

 {

}

public int compareByName(planet p)

 {

}

}

8.

class fraction

 { private int num;

 private int den;

 public fraction() // default constructor - set num to 0, den to 1

 {

 }

public fraction(int n,int d)

 {

 }

public void reduce()

 { }

 public int getden()

 {

 }

 public int getnum()

 {

 }

 public void printFraction()

 {

 }

public Fraction getFraction()

 {

 }

 public fraction add(fraction f)

 {

 }

 public fraction subtract(fraction f)

 {

 }

 public fraction multiply(fraction f)

 {

 }

 public fraction divide(fraction f)

 {

 }

}

9.

Write a class Car. A Car object should have two instance variables. It should

have mpg and gallons. It should have two constructors. It should have two methods: addGas and drive.

A test class should contain this:

Car myHybrid = new Car(49, 20);//Constructs a car that gets 49 mpg and has 20 gallons of gas

myHybrid.addGas(20);//adds twenty more gallons of gas

myHybrid.drive(100);//drives 100 miles

System.out.println(myHybrid.getGas());//prints the remaining fuel

Inheritance

A class can inherit all the methods and variables from another class. For example, if we wanted to enhance or change the car clas declared above we could say

public class Car2 extends Car

 {

 }

Car2 inherits all the methods and attributes of Car. It can not reference the private variables of Car, except through the methods, but it does have those variables.

We can change methods (override them) or add new features. We can also add new private variables. We do not inherit the constructor. We must call the constructor of the parent in the first line of our constructor, with a call to super (unless we want to call the default constructor if there is one)

public Car2(String color)

 {super(color); // calls the parent constructor

 }

10. Write a vehicle class that has a color, year and number of wheels. You should have a constructor, accessors and a modifier for the color.

11. Write a car class that extends the vehicle class. The constructor should only receive the color and year (then construct the vehicle). Add a mileage variable with an accessor and modifier (miles set to 0 in constructor).

12. Write a class that implements the Employee interface defined in #3.

13. Write a Teacher class that extends the Employee class. Add a variable to keep track of years worked (with a modifier and an accessor).

14. Write a Professor class that extends the Teacher class. It should have a variable to keep the University and have an accessor and a modifier.

15. Write a Policeman class that extends the Employee class. It should have a job description

Abstract Classes – Abstract classes are extended - then you must define the abstract member functions. An abstract class will have at least one method that is abstract. The rest of the class can be just like a regular class.
They are sort of in between classes and interfaces. The abstract class is declared like this

public abstract class test

It should have at least one abstract method (one that isn’t defined yet)

public abstract int getSum();

there is no body to it.

In order to use the class you have to extend it and then define all the abstract methods.

For Example

public class test2 extends test

 {public int getSum()

 {return 8;

 }

 }

This class inherits all the other methods of test. It has access to all the public methods (but not to the private variables)

8. Write an abstract Employee class. It should receive name, and years worked in the constructor. It should have accessors for those three and modifiers for years worked and salary. The getSalary method should be abstract.

5. Write a Teacher class that extends the Employee class. It should implement the getSalary method. A teacher makes $30,000 plus $4000 for every year they have been teaching.

6. Write a Firemen class that extends the Employee class. It should implement the getSalary method. A Fireman makes $22,000 and $3500 for every year they have been teaching.
___-

interface Dealer{

public double getPrice();

}

class Vehicle{

protected int numWheels;

protected double price;

public Vehicle(int nw){

numWheels = nw;

}

public int getNumWheels(){

return numWheels;

}

public String toString(){

return "Vehicle Class";

}

}

class Truck extends Vehicle implements Dealer{

private double loadCapacity;

public Truck (int nw, double lc, int price){

super(nw);

loadCapacity = lc;

this.price = price;

}

public double getLoadCapacity(){

return loadCapacity;

}

public double getPrice(){

return price;

}

public String toString(){

return "Truck Class";

}

}

class Car extends Vehicle{

private int numSeats;

protected String Type;

public Car(int ns){

super(4);

numSeats = ns;

}

public int getNumSeats(){

return numSeats;

}

public String toString(){

return "Car Class";

}

}

Below are examples of an Interface, and Abstract Class and a Class

public interface Vehicle{

 public int capacity();

 public int noOfWheels();

}

public abstract class Car implements Vehicle

{

public abstract int capacity();

public int noOfWheels()

{

return 4;

}

}

public class BMW extends Car

{

 public int capacityl()

{

return 6;

 }

}

__--

Inheritance Notes

supertype variable can store subtype reference
why? more general thing can be represented as more specific thing

eg: Human can be a Man, Human can be a Woman

eg: Coin can be a Penny, Coin can be a Dime

Code:

class Human {}
class Woman extends Human {}
class Man extends Human {}
Human h1 = new Human(); // OK
Human h2 = new Man();// OK
Human h3 = new Woman(); // OK
